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Abstract
Objective. Error-related potential (ErrP)-based brain–computer interfaces (BCIs) have received a
considerable amount of attention in the human–robot interaction community. In contrast to
traditional BCI, which requires continuous and explicit commands from an operator, ErrP-based
BCI leverages the ErrP, which is evoked when an operator observes unexpected behaviours from
the robot counterpart. This paper proposes a novel shared autonomy model for ErrP-based
human–robot interaction. Approach.We incorporate ErrP information provided by a BCI as useful
observations for an agent and formulate the shared autonomy problem as a partially observable
Markov decision process. A recurrent neural network-based actor-critic model is used to address
the uncertainty in the ErrP signal. We evaluate the proposed framework in a simulated
human-in-the-loop robot navigation task with both simulated users and real users.Main results.
The results show that the proposed ErrP-based shared autonomy model enables an autonomous
robot to complete navigation tasks more efficiently. In a simulation with 70% ErrP accuracy, agents
completed the task 14.1% faster than in the no ErrP condition, while with real users, agents
completed the navigation task 14.9% faster. Significance. The evaluation results confirmed that the
shared autonomy via deep recurrent reinforcement learning is an effective way to deal with
uncertain human feedback in a complex human–robot interaction task.

1. Introduction

Error-related potential (ErrP)-based brain–computer
interfaces (BCIs) have been widely used in human–
robot interactions in recent works [1, 2]. The ErrP
is an event-related potential (ERP) that are invol-
untarily evoked when a human perceives unexpec-
ted errors in an environment [3, 4]. The ErrP phe-
nomenon was first reported in choice-reaction tasks
[5]. After the participant was aware of an erroneous
responsemade by herself, a negative potential approx-
imately 80ms and a sustained positivity in the time
interval between 200 and 500mswere observed [3, 6].
It was later found that ErrP was also evoked 250ms
after the user observed an unexpected event in the
external environment [4]. Due to the nature of ErrP
signals, this type of brain activity is particularly use-
ful as supervision or feedback signals during human–
robot interactions tasks. ErrP signals can enhance the
scalability of a system in cases in which a user can

assess a device’s actions as correct or incorrect. The
agent takes advantage of the implicit brain signals
acquired from the human user when determining the
appropriate agent action. Thus, the human user does
not need to explicitly send action commands, signific-
antly reducing the burden on the human user [7, 8].

The shared autonomy in human–robot interac-
tion leverage the strengths of both human and robots,
where robots can no longer act solitarily, but must
share part of their autonomy space with human.
In most traditional shared control tasks, the user
needs to provide explicit input, such as keyboard
or mouse commands [9–11], during interactions.
BCI systems offer new channels that allow shared
autonomy by integrating user intent directly accord-
ing to the ongoing brain activity, thus eliminating
the need to exploit muscular control [12, 13]. The
use of shared-autonomy schemes may allow error-
related potentials to be used as complementary sig-
nals in BCI systems. Due to the natural uniqueness of
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ErrPs, ErrP-based shared autonomy can leverage the
advantages of human–robot collaboration without
interrupting the user’s main workflow. However, due
to the uncertainty of EEG signals, a direct mapping
of ErrPs to robot actions is not sufficient for optimal
behaviour. For example, a misclassification of EEG
signal will lead wrong robot action. On the other
hand, to train a shared autonomy model via deep
neural network need a large data set. But real ErrPs
data collections can be very time-consuming [14] and
have other drawbacks, such as overfitting if there is
not enough data.

In this paper, we propose a shared autonomy
framework that incorporates ErrP-based BCI via deep
recurrent reinforcement learning (RL). Considering
the uncertainty of ErrP, we formulate the shared
autonomy as a partially observed Markov decision
process (POMDP). Unlike the Markov decision pro-
cess (MDP), where the agent decides actions based
on the direct observation of the full underlying state,
POMDP allows the agent to make optimal decisions
based on a history of partial observations or uncer-
tain inputs [15, 16]. We consider the uncertainty of
the ErrP signal similar to an agent’s imperfect sens-
ing of the environment. A BCI module might incor-
rectly infer the user’s intention because of a noisy ErrP
signal; similarly, a robot might wrongly identify the
direction of an arrow sign due to the noisy image
captured from an imperfect camera module. In other
words, observations of the actual environmental state
could differ and be represented using probabilistic
models [17, 18]. Thus in our experiment, instead of
real EEG data, we simulate ErrP as a binary input of 0
or 1 and represent its uncertainty as a Bernoulli distri-
butionwith a probabilityP of observing the true state.

Similar with previous works [12, 19–21], an agent
accumulatively changes the decision probability over
time, in this paper, we use recurrent neural networks
(RNNs) to approach the POMDP. The RNN is an
approach that involves stacking the memory history
and is robust to partial observations [22]. To solve
the neural network training issue with a large data set,
we use binary value (0 or 1) to simulate the decoded
results of the ErrP classifier, instead using real EEG
data to train the model. This simulation enables us
to train our model without real users. Our approach
builds upon the shared autonomy framework [9]
As shown in figure 1, we apply our method in a
navigation task. Our studies with both simulated
users and real human participants suggest that ErrP-
based shared autonomy can successfully improve task
performance.

Our contributions in this work can be summar-
ized as follows:

• A novel ErrP-based RL for shared autonomy.
• Demonstration the feasibility of the proposed
shared control paradigm with simulated ErrP.

Figure 1. An overview of our method for ErrP-based
real-time shared autonomy and deep reinforcement
learning, where the user’s ErrP and robot observation of the
environment were concatenated as the neural network
input (a). We evaluated our method in a navigation task
with real human participants (b). The red arrow with an
arrow indicates the agent, and the green dot indicates the
target (c).

• Evaluation the ErrP-based shared autonomy with
real human participants in a navigation task with a
pretrained shared autonomy model.

2. Related works

2.1. ErrP-based BCI for human–robot interaction
Recently, the ErrP-based BCI has been widely used in
human–robot interaction tasks [1, 23, 24]. Salazar-
Gomez [1] proposed a closed-loop system that used
the ErrP as an implicit input to guide a robotic arm
in a binary bin-sorting task. Kim et al [2] used the
ErrP as an implicit reward of a robot to learn themap-
ping between human gestures and actions. Ehrlich
et al [23] demonstrated the applicability of ErrPs
as human feedback signals for real-time mediating
coadaptation in human–robot interactions. Lopes-
Dias et al [24] showed the feasibility of online asyn-
chronous decoding of ErrP signals and used the res-
ulting decoded signals as feedback to guide a robotic
arm towards a target after the robot was halted
at an unexpected moment. These works show that
ErrPs can be used to decode human intention during
human–robot interactions.

2.2. Shared autonomy using BCI
Shared control is a widely used technology in human–
robot interactions. BCI systems provide new chan-
nels that allow shared control by integrating the
user intent directly according to the ongoing brain
activity, eliminating the need to exploit muscular
control [12, 13, 25]. Various methods have been used
in BCI-based shared autonomy systems. Previous
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studies [26–28] have proposed flexible self-paced BCI
systems that switch between automatic and subject
control methods. While the switch model is efficient,
only one control command can be executed at a
time. Thus, this kind of method cannot take advant-
age of both human inputs and robot autonomy.
Some research [29, 30] has used shared control in
hierarchical systems, with the brain signal providing
high-level commands via BCIs as the robot performs
low-level tasks, such as grasping, navigation, and
manipulation. In [30], steady-state visually evoked
potentials were used to select a target while a robot
arm performed a specific grasping action. How-
ever, this shared control method subdivides tasks
into separate modules for the human user and the
robot. Recently, deep RL frameworks incorporate
user inputs and agent observations to achieve shared
autonomy [9]. This shared control scheme opens the
door to the use of ErrP signals as an alternative or
complementary signal in BCI systems.

2.3. ErrP-based human-in-the-loop RL
ErrP has been widely used in human-in-the-loop RL
systems. In these systems, the ErrP signal is used as
a positive or negative reward to accelerate the train-
ing of autonomous agents [31–33]. In [19], ErrPs was
used as negative reinforcers of the actions to infer the
optimal control strategies. In [20], ErrP was used to
learn the reward function in an inverse RL control
to the robot to avoid obstacles. In [12], inverse RL
based on ErrP signals was used to infer the goal pos-
ition in a virtual grid. In [31], ErrP-based RL was
used to update the reward to determine a policy in
a route learning strategy. ErrP has also been used in
RL to choose the correct target among several pos-
sible targets. In [34], ErrPs served as the reward in a
RL approach to train an intelligent neuroprosthesis
controller. The objective in this work was to improve
the control policy. In [2], ErrP was used to train a
robot to learn human gestures through a reinforce-
ment learning strategy based on the leap motion and
ErrP features. However, when the ErrP signal was
used as a reward, while the ErrPs accelerated learn-
ing, the signals operated independently of the system
during testing [31–33].

Unlike others works where human-in-the-loop
RL frameworks leverage human feedback to train
autonomous agents that operate independently of the
user at test time [31–33]. In our paper, we combine
user input (ErrP) and robot observation as inputs of
the deep model for mapping optimal actions. The
shared autonomy will always need to leverage user
input to accomplish the task both at training and test
time.

2.4. Formulating human–robot Interaction as
POMDP
A POMDP can handle sequential decisions with vari-
ous uncertainties arising fromhuman feedback errors

and sensing noise. The POMDP formulates a problem
in which the state measurements are partial observa-
tions in sequential decisions. Recently, the POMDP
has emerged as a popular approach in human–robot
collaboration tasks [35–38].

In [35], human–robot collaboration was formu-
lated as a POMDP by characterizing the robot’s
information and human’s intention as the state space.
In [36], human–robot collaboration was formulated
as a POMDP to learn the human model via Bayesian
nonparametric learning to determine the human
state. Moreover, in [37], the observation model,
dynamic machine model, and human model were
combined in one framework and formulated as a
POMDPmodel for the human-in-the-loop system. In
[38], human–computer interactions were formulated
as a consequence of a POMDP and used to model
human perception during interactions. In summary,
the POMDP does not assume that the system state is
fully observable, and the POMDP’s ability to repres-
ent uncertainties arising fromdifferent sourcesmakes
it a suitable model in human–robot collaboration
applications. In our paper, ErrP uncertainty is repres-
ented by a Bernoulli distribution with a probability
P of observing the truth. As a result, our system can
be considered a partially observableMDPwith uncer-
tain observations. The POMDP allows for optimal
decision-making under uncertain input conditions.

3. Method

3.1. Overview
In this section, we first introduce background know-
ledge on the POMDP. We then introduce the ErrP-
based shared framework, neural network architecture
and RL, task environment, and input feature to the
neural network.

3.2. POMDP background
A MDP assumes that an agent can fully observe an
environment. Otherwise, the agent senses the envir-
onment with limited or uncertain observations. If
the observations are uncertain, the state signal is no
longerMarkovian, violating a key assumption ofmost
RL techniques [39]. A POMDP allows for optimal
decision making even when the agent’s observation is
partially [16]. A partially observable MDP is a tuple
〈S,A,Ω,T,O,R〉 in which S is a finite set of states,
A is a finite set of actions, Ω is a finite set of obser-
vations, T is a transition function defined as T: S×
A× S→ [0,1], O is an observation function defined
as O: S×A×Ω→ [0,1], and R is a reward function
defined as R: S×A× S→ R.

The discrete set of observations Ω={
o1, ......,oM

}
represents the agent’s observation,

which depends on the next state s ′ and is some-
times conditioned on its action a. This set can
be determined with the observation function O:
S×A×Ω→ [0,1]. The probability of observing o
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in state s ′ after an action is O(s ′,a,o). This requires
that O(s ′,a,o)! 0 and

∑
o∈ΩO(s ′,a,o) = 1. In

our paper, the discrete partial observation is
Ω= {0,1}, which represents the decoded ErrP res-
ult. The probability follows the Bernoulli distribu-
tion. If P= 0.7, the probability can be modelled
as follows: O

(
s ′,a,o1

)
= 0.7, O

(
s ′,a,o2

)
= 0.3, or

O
(
s ′,a,o2

)
= 0.7, O

(
s ′,a,o1

)
= 0.3. In this case, the

agent has a 70% chance to observe the true envir-
onment state. Thus, an agent with uncertain ErrP
feedback conforms to POMDP.

3.3. ErrP-based framework
The classification of ErrP signals collected from
humans is not perfect due to misclassification. ErrP
uncertainty can be regarded as an agent’s imperfect
sensing of the true state of the environment. We use
a deep RL agent that maps observations from sensors
(including ErrP) to actions. We incorporate the ErrP
information provided by a BCI as useful observations
for the agent. Our method jointly embeds the ErrP
information et acquired from the user and the agent’s
observations of the environment st by concatenating
the values.

˜
s t =

[
et
st

]
.

3.4. Network architecture and RL
Our network architecture builds on the one proposed
by Sutton et al [40]. The actor consists of 64-bit
gated recurrent units that use fully connected lay-
ers to process the input and produce the output val-
ues of the hidden states, hat . The action probabilit-
ies are produced by the final layers, z, via a bounded
softmax distribution: P(u) = (1− ε)softmax(z)u +
ε/ |U|, where ε/ |U| lower-bounds the probability of
any given action.We anneal ε linearly from 0.5 to 0.05
across 5500 training episodes and set it to 0 during the
test. The critic is a feedforward network withmultiple
ReLU layers and fully connected layers.

We choose the widely used advantage actor-critic
(A2C) algorithm [41, 42] to stabilize the training
by reducing the variance. We train the critic with
this policy to estimate the Q value using TD(λ)
[41], which is adapted for use in deep neural net-
works. We train the actor with advantage function
A(τ a,ua) = Q(τ a,ua)−V(τ a), where Q(τ a,ua) is
action value function and V(τ a) is value function.
The update direction is defined by the gradient

g= ET
[∑T−1

t=0 ∇θπ logπ (ut |st )Gt

]
, where Gt is

empirical returns. At each time step, the policy archi-
tecture is fed the ErrP, agent’s local observation and
step number and is tasked with estimating the Q-
value function and policy at each point.

3.5. Task statement
We test our method in two environments. As shown
in figure 2, the navigation environment is described

Figure 2. The environment without obstacles (a) and
obstacles (b).

by a grid map. The first environment is a grid map
without obstacles, and the second environment is a
grid map that includes several obstacles. The layout
of the map and the positions of the obstacles were
fixed during training and testing. The second envir-
onment simulates a real-world environment where an
agent’s observation is blocked by obstacles. The use of
two environments demonstrates the generalizability
of the proposed shared autonomy framework.

The size of the grid was 11× 11. The locations
of the robot and the target were simplified as grid
coordinates. The horizons of the robot were limited
to the four corners of its neighbourhood. The robot
can move north, south, west, or east during each
time step. The robot cannot move towards the bar-
riers or out of the grid. The robot is surrounded by
a 1× 1 horizon in which it can detect the target. The
agent’s task is to identify the goal location within the
map. The agent has a limited sensing range that is
assumed to be substantially smaller than the size of
the maze. The target will be detected when the target
is in the agent’s sensing range. The goal location and
agent start position are randomized (spawned) in a
constant static map in each episode during training
and testing. After the goal is achieved, a new episode
begins. To encourage short trajectories, each time step
has a step cost (penalty) of 0.01. A typical sparse ter-
minal reward (20) and the step cost are provided to
encourage the agent to reach the target position in the
minimal number of steps.

3.6. Input features of the neural network
The input features include ErrP feedback from the
human user and the agent’s observations of the envir-
onment. The agent’s observations of whether the tar-
get is in its current position and four adjacent posi-
tions. The step number and most recent agent action
are also included as features. All features are normal-
ized by theirmaximum values. Information about the
target position was not included in the input.

3.6.1. Last action
The coupled action is a useful input feature because
the ErrP signal is cued by the agent’s last action.

3.6.2. Mark of visited grads
For a stationary target, an optimal search strategy
is trivially represented by a path that attempts to
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cover the entire environment without revisiting any
location. The marker was often used as a reward in
learning a policy to encourage the agent to explore
unvisited locations [43, 44]. However, the uncertainty
of ErrP feedbacks could cause the agent to make
incorrect decision. In such case, revisiting an explored
location might allow a correction. Indeed, we found
that the use of the visited marker as a reward lim-
ited the optimal policy and thus yielded slightly sub-
optimal policies. We found that using visited marker
as an input allows the model to learn an optimal
strategy.

3.6.3. ErrP information
To eliminate the gap between the simulated EEG data
and the real EEG data collected from a human user,
we simplified the EEG data as a binary variable, which
corresponds to the decoding output of the ErrP classi-
fier. Duringmodel training, we use the binary values 0
and 1 to simulate the output of the ErrP binary clas-
sifier. To generate the ErrP values, we calculated the
shortest path towards the target position at each step.
The shortest path [45] was computed according to the
full map environment. This approach follows a envir-
onment in which the human user has a global view of
the environment. If the current shortest path is lar-
ger than the previous shortest path, we considered the
current step to be bad action and assigned an ErrP
label of 1; otherwise, we assigned an ErrP label of 0.

4. Experiment 1: simulated users

We begin our experiments with simulated users.
Then, we evaluate the shared autonomy with real
human participants. We use a binary value (0 or 1)
to simulate the decoded results of the ErrP classifier.

4.1. Experiment design
We first consider the ErrP as a full observation with
100% accuracy and then consider ErrP as a partial
observation with different accuracy levels. We use
an autonomous agent without ErrP feedback as our
baseline. Our central hypothesis is that our method
can improve the agent’s performance despite the par-
tial ErrP observations.We use simulated pilots, which
enables us to more thoroughly consider different
aspects of our method (such as the effects of the ErrP
accuracy level on training an effective shared con-
trol model and gradient analyses with different ErrP
accuracies at various positions). Moreover, we use a
simulated ErrP to train the shared control model that
is used to test with real human users.

4.1.1. Partially observable ErrP and without ErrP
We first trained an autonomous agent without ErrP
feedback as the baseline. We then trained six agents
receiving ErrP feedback with different levels of accur-
acy ranging from 65% to 100%. We evaluated the
agents in 20 000 episodes with random starting and

Figure 3. Training curve with different ErrP accuracies
conditions as well as no ErrP condition (a). The average
number of steps used to reach the target position (b).

target positions. Figure 3(a) shows the training curve
of the agents and figure 3(b) shows the average num-
ber of steps used by each agents to reach the target.

4.1.2. Trained with full observation and evaluated
with partial observation
To test the robustness of the POMDPmodel to uncer-
tainty, we compared twomodel: one was trained with
partial observations (75%ErrP accuracy) and another
one was trained with full observations (100% accur-
acy). We evaluated the models with incrementally
more complete observations (ranging from 70% to
100% accuracy).

4.1.3. Gradient analysis on ErrP with different
observation levels
The gradient computes the derivatives of the out-
puts of a model with respect to the input variables
and identifies which input variables are important for
predicting the outputs. The gradient-based method
is a natural and popular attribution method [46]
for explaining deep neural network decisions. This
method uses the learned model to determine how
important the input dimension is for the output.
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To better understand the mechanisms that allow the
POMDPmodel to performwell in uncertain environ-
ments, we analysed the performance and gradients of
POMDP models with different accuracies. More spe-
cifically, we compared the gradient at 70%, 75%, and
80% accuracies. We found that when the ErrP accur-
acy is greater than 80%, the learned policy is the same
as that learned when the accuracy is 100%. This result
indicates that the ErrP gradients are the same when
the accuracy is greater than 80%. Therefore, we com-
pared the gradients of models trained with accuracies
less than 80%.

4.1.4. ErrP gradient analysis at different positions
During the test, we found that ErrP has a greater
effect on the outputs in the central area than on those
in the edge area. We visualized the ErrP gradient
map of the model in the two environments to assess
whether the ErrP has different effects on the outputs
at various positions. The computation of the gradi-
ent map is extremely quick since it requires only one
backpropagation pass. The gradient map encodes the
effect of the ErrP signal on the agent’s action at differ-
ent locations. The colours represent different gradient
values.

4.1.5. Agent performance analysis
The performance was operationalized according to
the step number and the success rate of the agent in
reaching the target position from the start position.
We compared the performance of agents with and
without ErrP feedback. Even without human assist-
ance, the agent would eventually reach the target.
To evaluate the search ability of different distance
ranges, we varied the initial distance between 2 and
20. Each distance was evaluated over 10 000 runs. We
compared the agent performance in the two envir-
onments with no ErrP, 70% ErrP accuracy, and 80%
ErrP accuracy.

4.2. Result
4.2.1. Partial observation ErrP and without ErrP
Figure 3 shows that the agent with 100% accur-
ate ErrP feedback performs better than the baseline
agent without ErrP feedback. The result also sugges-
ted that higher ErrP accuracy corresponds to fewer
steps required to reach the target position.

4.2.2. Trained with full observations and evaluated
with partial observations
Figure 4 shows the average number of steps used
during the test with models trained with full obser-
vations (100% ErrP accuracy) and partial observa-
tions (75% ErrP accuracy). The average number of
steps decreased as the correct probability increased
for both conditions. However, when the accuracy
was less than 80%, the model trained with partial
observations used fewer steps than the model trained

Figure 4. The average number of steps used to reach the
target position for different accuracy levels with models
trained on partial and full observations.

Figure 5. ErrP and position gradients with different ErrP
accuracies.

with full observations. In contrast, when the accur-
acy was greater than 80%, the model trained with
partial observations used more steps than the model
trained with full observations. The POMDP model
allows the performance to scale linearly as a function
of the observation quality. Note that when the accur-
acy was 70%, while both models exhibited a reduced
performance, the MDP model decreased to approx-
imately 40 steps, while the POMDP model decreased
to approximately 27 steps. The performance of the
model trained with full observations declined consid-
erably when presented with incomplete observations.
When the accuracy was 100%, the POMDP model
used approximately 12 steps, reaching near-perfect
levels (approximately ten steps).

4.2.3. Gradient analysis of ErrP with different
observation level
As shown in figure 5, the ErrP gradient increases as
the ErrP accuracy increases. This result indicates that
more accurate ErrPs have more important effects on
the outputs than ErrPs with low accuracy. In contrast,
when the ErrP has a larger effect on the output, the

6
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Figure 6. ErrP gradient distribution at different positions in
the maps of the two environments. The colour indicates the
gradient value at different positions.

effect of other input variables on the output should be
decreased. In other words, the gradients of the agent’s
observations, such as the position variables, decrease.
As shown in figure 5, the position gradient decreased
as the ErrP accuracy increased. These results demon-
strate that human feedback gradually induces more
effects, while agent observations have fewer effects, as
the ErrP accuracy increases during training.

4.2.4. ErrP gradient analysis at different positions
Figure 6 shows model gradient maps of the two maze
environments. In general, the ErrP gradient is large
in the central area and small in the edge areas, which
indicates that the ErrP has a substantial effect on
the central position. In other words, the agent rely
more on human feedback in central area than in edge
area. In future research, more advanced interpreta-
tion methods, such as integrated gradients [47] and
SmoothGrad [48], could be used for further analysis.

4.2.5. Agent performance analysis
The average number of steps were 51.2, 34.8, and 24.0
for the no ErrP condition, 70% accurate ErrP con-
dition and 80% accurate ErrP condition in environ-
ment 1 and 50.7, 40.8, and 25.7 in environment 2,
respectively. The average number of steps gradually
increased as the initial distance increased for both the
ErrP conditions and the no ErrP condition in envir-
onments 1 and 2.

Sixty steps was taken as the maximum num-
ber of steps; that is, if the agent successfully reaches
the target position within 60 steps, it is considered
a success. Otherwise, the agent has failed. Figure 7
shows the success rate to reach the target position
within 60 steps for each initial distance. The suc-
cess rate gradually decreased as the initial distance
increased. The average success rates were 79.74%,
83.19% and 95.86% for the no ErrP, 70% accurate
ErrP and 80% accurate ErrP conditions for environ-
ment 1 (figure 7(a)) and 69.43%, 76.70% and 94.21%
for the no ErrP, 70% accurate ErrP and 80% accur-
ate ErrP conditions for environment 2 (figure 7(b)).
The success rate gradually decreased as the initial dis-
tance increased for both the ErrP conditions and the
no ErrP condition in environments 1 and 2, except

Figure 7. Success rate of reaching the target position within
60 steps for each initial distance with the no ErrP, 70%
accurate ErrP, and 80% accurate ErrP conditions for
environments 1 and 2.

when the initial distance was the maximum value for
the no ErrP condition in environment 2. The start and
target positions were limited to the four corner posi-
tions, which allow the initial distance to bemaximum
value. We found that when the agent start position
was (0, 0), the agent moved in the direction of the
opposite corner. If the agent start position and target
positionwere (0, 0) and (10, 10), 20 steps were used to
reach the target position, which is the optimal num-
ber of steps. These results indicate that even when the
ErrP signal is 70% accurate, the success rate is higher
than the success rate in the no ErrP condition.

4.3. Discussion
4.3.1. Performance of the shared control model
The simulation experiment indicates that the shared
control model can greatly improved the task effi-
ciency compared with autonomous agent. As shown
in figure 7 , even when the human feedback was par-
tially inaccurate, the success rate of 70% and 80% of
ErrP accuracy on the success rate to reach the target
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position is larger than in the case of no ErrP. The
integration of the agent observations and human per-
ception help the agent gains more information about
the environment than an autonomous agent. Besides,
the higher success rate of 80% ErrP accuracy com-
pared with 7% one demonstrated that the agent can
make better decisionswithmore accurate observation
of the environment.

In the shared control policy with 100% accuracy,
we found that if the ErrP signal is provided, the agent
changes its search direction to the left in an anticlock-
wise search approach, as shown in figure 8(a). The
agent changes its trajectory in real-time to adapt to
the human feedback as previous study [49]. The same
performance was observed when the ErrP accuracy
was greater than 80%.However, when the ErrP accur-
acy was less than 80%, the agent learned a differ-
ent accuracy. In this case, the agent did not change
its search direction immediately after an ErrP signal
was provided. Instead, the agent changed its direc-
tion when it was more confident. Thus, we hypothes-
ize that the confidence level is related to the ErrPs
of the previous steps and the current position. For
the no ErrP condition, the agent’s trajectory followed
an anticlockwise search. The trajectory was fixed and
depended only on the agent’s starting point, as shown
in figure 8(b).

4.3.2. ErrPs with different accuracies
We investigated the performance of agents trained
with various noise levels during training. We provide
the input accuracy during training. Figure 3(a) shows
that the agent learned different policies during train-
ing with different ErrP accuracy levels, demonstrat-
ing that the ErrP accuracy could be learned by the
model during training. Figure 3(b) shows that the less
uncertain the human feedback, the better decision
the agent can make. In addition, we investigated the
threshold of the ErrP accuracy that is sufficient for
training an efficient shared control model. We found
that if the ErrP accuracy is greater than 70%, the
model trained with this ErrP accuracy performs bet-
ter than an autonomous agent. However, if the ErrP
accuracy is less than 70%, the shared control per-
formance was not considerably different from that
of a sole autonomous agent, as the sole agent could
learn a search policy without human feedback. Thus,
we take 70% as the threshold for training an effect-
ive model. This result provided a new perspective
on human feedback accuracy in shared control critic
models. Therefore, we selected participants with off-
line accuracies greater than 70% for the online test.

4.3.3. Model robustness
As shown in figure 4, the model trained with high
ErrP accuracy was more sensitive to ErrP input than
the other models. The agent is more likely to change
its search direction when the human user provides
negative feedback. In other words, human users have

Figure 8. The agent search policy with 100% accurate ErrP
(a) and no ErrP (b).

a more significant effect on the agent’s action in a
more accurate ErrPmodel than in a less accurate ErrP
model. The performance declines dramatically when
using the model trained with full observations and
tested with partial observations. However, the model
trained with partial observations is more capable of
handling partial observability when the observation
quality changes during the evaluation. The results are
consistent with the results of [22]: the model trained
with partial observations is robust towards missing
game screens and remains scalable, improving the
performance as more data become available. Further-
more, themodel trainedwith partial observationswas
more robust to uncertainty during evaluation, despite
the fact that the two learned models used the same
neural network architecture. In addition, themodel is
scalable enough to improve performance as the obser-
vation accuracy increases. Therefore, during the test
with real human participants, we chose the shared
control model trained with ErrP accuracy, which
is similar to real EEG classification accuracy with
cross-validation.

5. Experiment 2: real-world user study

In this section, we evaluate our method during the
test phase with real human participants. Our model
was pretrained with simulated EEG data. We want to
validate the feasibility of using the model trained on
simulated EEG data with real human participants in
the same task environment.We validate the feasibility
of the learned model in two environments: a envir-
onment without obstacles and a environment with
obstacles.

5.1. Experiment Design
5.1.1. Interaction environment design
To evoke ErrP signals, the interaction environ-
ment, especially the stimulus, needs to be carefully
considered [50]. The environment design was based
on the design presented in [21], which includes a
grey grid with a red agent and a green target on a
black background. The agent’s start and target pos-
itions were generated under the condition that their
distance be larger than one grid (the agent’s observa-
tion ability). At each step, the agent moved from its
current position to one of the four adjacent positions.
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A 1 s animation within the agent served as a count-
down to draw the participants’ attention. The agent
then jumped instantaneously to the next position,
with an arrow directed towards the position. This
arrow remained visible for 1 s. Then, the highlights
disappeared, and the agent remained at its new posi-
tion for 1 s before its next step.

Before the real-time control experiment, parti-
cipants were first asked to perform five blocks of 120
trials in environment 1, which contained no obstacles.
The agent’s initial and target positions were randomly
generated. If the agent did not reach the target posi-
tion after 60 trials, a new run was started. The EEG
data collected during these five blocks were used to
calibrate the classifier. If the agent’s action decreased
the distance to the target position, the action was
labelled ‘correct’; if the agent’s action increased the
distance to the target position, the action was labelled
‘error’. During the experiment, the participants were
asked to mentally judge whether the agent’s action
was correct or an error.

5.1.2. Participants
Sixteen participants (average age 28.57 ± 3.11 years
old, two females) participated in the experiment.
Seven participants participated in both the offline-
BCI and online-BCI experiments. Seven participants
participated in only the offline experiment, as their
ErrP BCI performancewere below the 70% threshold.
As described in section IV.C, the shared autonomy
model performs better only when the ErrP classifica-
tion accuracy is greater than 70%. The remaining two
participants were excluded from further analysis, as
the participants could not complete the online exper-
iment due to battery power issues. All participants
provided informed consent for the study, which was
approved by the University of Technology Sydney
Human Research Ethics Committee (ETH19-3830).
All participants had normal vision and did not report
any known neurological or psychiatric diseases.

5.1.3. EEG recording and pre-processing
EEG signals were recorded from 64 locations accord-
ing to the extended 10/20 system using a LiveAmp
wireless EEG system from Brain Vision [51] with a
sampling rate of 500Hz. The reference channel was
placed at the FCz channel position, and the ground
channel was placed at the forehead position [51]. The
signal was resampled to 256Hz and filtered using
a finite impulse response bandpass filter with cut-
off frequencies 1–50Hz.. Then, the common average
reference was used to reduce signal contamination.
Both offline training and online testing used a same
electroencephalogram (EEG) signal pre-processing
pipeline

5.1.4. ErrP Feature extraction
Temporal features extracted from time-series data
have been used in many ErrP activity studies

[1, 50, 52, 53]. It has been reported that the
classification results of temporal features are bet-
ter than those of spectral features for decoding ErrP
signals [54]. Thus, temporal features were used for
classification in this study. Similar with studies [21,
24], the averaged signal amplitude within a 30ms-
long window between 150ms and 600ms at each
trial and channel was extracted. Thus, during the
time window from 150ms to 600ms, there will be
15= ((600− 150)/30) samples for one channel. The
classification between correct and error feedback was
performed from all 64 EEG electrodes [21]. Thus, the
feature vector length is 64×15= 960.

5.1.5. ErrP classifier training
To enable real-time detection of neural activity dur-
ing each trial, the classifier must be calibrated to clas-
sify the EEGwaveform as ErrP or non-ErrP. This ErrP
classification is a binary classification task that indic-
ates the agent’s action as correct or incorrect.

To minimize overfitting effects, we used tenfold
cross-validation to train the classifier with 90% of the
data, and the remaining 10% of the data were used
for testing. The extracted features include redund-
ant features, and traditional linear discriminant ana-
lysis (LDA) has limited flexibility for complex fea-
tures. Thus, it is necessary to search for a subset of
the available features that can improve the classifica-
tion performance. Shrinkage and selection methods
are commonly used feature selection methods. We
use shrinkage LDA [55] as the classifier in our paper,
which is widely used for decoding ErrP signals [50].

A binary linear classifier can be characterized by
a projection vector w and a bias term b referring to
the separating hyperplanewx+ b= 0. The projection
vector of LDA is defined as:

w= S−1
w (ua − ub) (1)

where S−1
w is the covariance or within class variance,

ua and ub is the mean value of class A and class B.
The empirical covariance of the above is unbiased

and has good properties when the number of obser-
vations is greater than the dimensionality of vari-
ables. However, for high-dimensional data with only
few data trials, the estimation covariancemay become
imprecise because the covariance of matrix estim-
ate is singular and the inverted matrix in impre-
cise. This phenomenon leads to a systematic error:
large eigenvalues of the original covariancematrix are
estimated too large, and small eigenvalues are estim-
ated too small [56]. This estimation error makes the
performance of LDA in high-dimensional situations
far from optimal. Shrinkage is a common method
that compensates the systematic bias in the estim-
ated covariance matrix by a regularized covariance
matrix Sb:

Sb = (1−λ)Sb +λD (2)
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Figure 9. ERP analysis for the correct and error conditions,
averaged over the online trial sessions at Fz channel by
removing baseline [−300 0]ms. The black line is the
difference between correct and error condition. The red
and blue dotted lines are the standard deviation for the
error and correct conditions respectively.

where D is a diagonal matrix taking the diagonal ele-
ments of Sb. Thus, the parameterλ forces the extreme
eigenvalues towards average [56].

5.1.6. Online test with real participants
The participants who achieved ErrP accuracy
threshold of 70% further the online test. The shared
control model that best matched the participant’s off-
line accuracy was used in the online test. For example,
if the participant’s offline ErrP classification accur-
acy is 78%, we chose the shared control model that
pre-trained with 80% ErrP accuracy. The computa-
tional cost for the training model is about 40 hr and
30min, which is running on a workstation with two
Intel Xeon 6132 CPUs and NVIDIA RTX 6000 GPUs,
as well as 96GB of RAM.

5.2. Results
5.2.1. Electrophysiology analysis
Figure 9 shows the correct, error, and difference
grand average potentials (error minus correct aver-
ages) in the Fz channel averaged across all subjects
in the online sessions for both environments. The
difference grand average was characterized by three
components: a negative deflection at approximately
200ms, a positive deflection at approximately 300ms,
and another negative component at approximately
400ms.

5.2.2. Classification analysis of ErrP
In this section, we analyse the real-time classification
accuracy of the ErrP signals with the classification
model calibrated with offline data for the two envir-
onments. As mentioned in the simulation section, if

Table 1. ErrP training accuracy with ten-fold cross-validation and
test accuracy for the two environments.

Participant
Offline

training (%)

Online test of
environment

1 (%)

Online test of
environment

2 (%)

S2 73.33 77.68 77.73
S4 72.83 60.88 58.02
S5 85.17 94.75 65.02
S6 74.67 69.01 66.54
S8 76.17 71.91 66.11
S10 80.17 71.81 70.25
S15 75.33 64.28 70.11
Average 76.65 73.22 69.20

the ErrP accuracy is less than 70%, the lowErrP classi-
fication accuracy and no ErrP models perform simil-
arly. Table 1 shows the offline training accuracy using
10-fold cross-validation and the online test accuracy
for the two environments. The overall offline training
accuracy was 76.65%. The overall online test accuracy
were 73.22%, 69.20% for environment 1 and environ-
ment 2, respectively.

5.2.3. Agent performance analysis
In this section, we analysed the success rate and num-
ber of steps for real human users to evaluate the feas-
ibility of the shared control model with real human
participants. To test the model’s target search ability
for different initial distances, we chose episodes with
initial distances between 2 and 20 (maximum), result-
ing in a total of 19 episodes with random sequences
for each environment. The episodes were pregener-
ated for all the participants.

During the online test, the brain signal’s classific-
ation of the agent’s last action as either correct or an
error was fed into the model in real-time to generate
the next action. If the agent did not reach the target
position after 60 steps, the run was ended, and a new
episode was started. The maximum number of steps
was set to ensure that participants were not discour-
aged by long runs. In the experiment with real human
participants, the maximum number of steps was set
to 60 for each episode. Therefore, episodes with more
than 60 steps were not included when calculating the
average number of steps.

As shown in table 2, the success rate to reach the
target position within 60 steps was 81.20%, and this
value was averaged over all participants. The details
of steps of each episode can be found in table A1.
The average number of steps was 24.87, which was
averaged over all participants by removing failed epis-
odes. The success rate was approximately the same as
the success rate of the 70% accurate ErrP condition
(83.19%) and was larger than the success rate of the
no ErrP condition (79.74%) in the simulations. The
average number of steps was almost the same as the
number of steps in the 70% accurate ErrP condition
(24.4) and less than the average number of steps in
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Table 2. Success rate and average number of steps with real human participants.

Success rate (%) Mean and standard of number of steps

Env 1 Env 2 Env 1 Env 2

S2 94.74 89.47 23.11± 13.2 20.06± 14.38
S4 78.95 84.21 26.07± 16.56 26.88± 13.97
S5 94.74 84.21 21.06± 11.73 22.69± 12.93
S6 63.13 63.16 29± 18.69 28.42± 15.78
S8 78.95 89.47 24.8± 14.57 17.53± 9.91
S10 84.21 94.74 24.94± 15.74 23.61± 12.81
S15 73.68 89.47 28.86± 17.59 21± 13.35
Average 81.20 84.96 24.59± 14.66 21.92± 12.97

the no ErrP condition (28.4). With real human parti-
cipants, the number of steps was 12.43% less than the
number of steps in the no ErrP condition.

As shown in table 2, the success rate to reach the
target position within 60 steps was 84.96%, and this
value was averaged over all participants. The details
of steps of each episode can be found in table A2. The
average number of steps was 23.28, which was aver-
aged over all participants by removing failed episodes
(failure rate = 1−success rate). The success rate was
better than that of the 70% accurate ErrP condition
(76.70%) and the no ErrP condition (69.43%) in the
simulations. The average number of steps was smaller
than that in the 70% accurate ErrP condition (25.6)
and no ErrP condition (25.4). With real human par-
ticipants, the number of steps was 8.35% less than the
number of steps in the no ErrP condition.

5.3. Discussion
5.3.1. Feasibility of simulated ErrP for training
Wedemonstrated the feasibility of ourmethod, which
involves training with simulated data and testing with
real EEG data, with human participants in real time.
The key idea is that the simulated data were binary
values (0 or 1) based on the ErrP classifier, which has a
binary output (0 or 1). The simulated pilot enables us
to train the model without real users. Training an RL
model requires a vast amount of data, which rendered
the capturing of the EEG from real users infeasible.
Thus, we use binary values instead of a linear scale
between 0 and 1 to increase the similarity between the
simulation data and the classification results of real
EEG data. The simulated ErrP data can also be scaled
linearly between 0 and 1 to train the model. In this
case, the classifier’s output should scale linearly with
the real ErrP data, which is related to the goal congru-
ency, as discussed in [21].

5.3.2. Consider the learning as a POMDP with noisy
ErrPs
The policy learned with clean observations (100%
accurate ErrP) is not robust and vulnerable when
the environment is inherently noisy during the test.
The discrepancy between the clean simulated ErrP
data and the real human EEG data contributes to
this ‘reality gap’. The real human ErrP feedback

cannot match the simulated feedback with 100%
certainty. Thus, the shared policy may fail with real
human participants because the ErrP signal cannot
be decoded with 100% accuracy. We formulate the
learning as a POMDP and train the model with sim-
ulated noise observations. We find that the model
trained with partial observations is more robust to
noise during the test than the model trained with full
observations.

5.3.3. Area analysis
As shown in figure 10, the environment was divided
into two areas: the central area and the edge area.
Figure 11 shows the ErrPs of online sessions in the
central and edge areas. The positive and negative
peaks of the ErrP in the central area were larger than
those in the edge area. We hypothesize that the par-
ticipant was more involved in the experiment when
the agent was in the central area than when the agent
was in the edge area. We also analysed the accur-
acy in the central and edge areas during environment
2. As shown in figure 12, the online test accuracy
was higher in the central area than in the edge area,
except for participant S10, where the accuracy in the
edge area was slightly higher than that in the central
area, and participant S15, where the accuracy was the
same in both the central and edge areas. Both the lar-
ger ERP peak amplitude and higher ErrP accuracy in
central area demonstrated that the participants give
more correct feedback in the central area than in the
edge area. These findings indicate that human parti-
cipants with better performance should be assigned
more authority in the critical central area than in the
edge area. The simulation result of the gradient map
shown in figure 6 demonstrates that the ErrP acquired
from the simulated users has a greater effect in the
central area than in the edge area.

5.3.4. ErrP peak analysis
As shown in figure 9, the amplitude of negative peak
of error condition is bigger than correct condition.
However, the correct condition has positive peak
amplitude that error condition. Similar result was
found in [57], where P300 amplitude following error
feedback was not larger than those following cor-
rect feedback. We also analyse the difference between
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Figure 10. The environment was divided into central areas
and edge areas.

Figure 11. ERP of the error condition in the central and
edge areas in Fc channel. Statistically significant difference
(p< 0.05) was found at green area between error and
correct conditions.

Figure 12. ErrP accuracy of online test for central and edge
areas.

the positive peak and negative peak while an agent
continuously performed the wrong action. Figure 13
shows that the peak decreased in the first four
sequences. We hypothesize that the participant has

Figure 13. The average difference between the positive and
negative peaks versus the error level.

less expectations of the agent behaviour, as ErrP
signals are evoked by unexpected errors. Similar
finding was also reported in [58], where the 1st and
2nd feedback ErrP responses exhibited slight dif-
ferences in terms of latency and amplitude. How-
ever, we could not explain the increase after the
fifth sequence. This increase may be related to the
participant’s emotional state. Future research should
attempt to determine how continuous errors affect
the ErrP peak. Note that the agent action was determ-
ined by the controlmodel and the agent observations,
including the environment information and the ErrP
signal. Even if the ErrP classification is correct, the
agent can still perform incorrect actions, especially
in the edge areas, as the ErrP has a smaller effect on
the agent actions in this region based on the gradient
analysis.

5.3.5. Potential and Limitation of the shared control
model
In addition to testing the shared control model
in a simulation environment, one potential break-
through of this research was to test and demon-
strate the shared autonomy in real environment. The
ErrP classification accuracy would be a key part of
feasibility of the shared control used in real envir-
onment. Unlike in previous study of ErrP-based
shared control [12, 19, 21], we demonstrated that
the model worked successfully when the ErrP classi-
fication reached higher accuracy. One major limita-
tion of the proposed shared control model is that the
shared-controlled agent would perform better than
an autonomous one only if the ErrP classification
accuracy is above 70%. Achieving such classification
accuracy in a real-world environment where the user
is subject to distractions and noises could be chal-
lenging. Further advancements in EEG hardware is
required before the proposed framework can be adap-
ted outside a lab environment. The preprocessing and
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classification could also be optimized to improve the
ErrP classification accuracy. The preprocessing used
in this paper are not considering possible confounds
due to eye movements, which is critical for error-
related signals analysis. Moreover, the feature selec-
tion and classification algorithm could be optimized
to improve classification accuracy.

6. Conclusion

We proposed an ErrP-based shared control paradigm
with deep recurrent RL. To address the low decod-
ability of the ErrP signals, we formulated the learn-
ing as a POMDP and used an RNN to solve the
POMDP. The shared control model was trained
with a simulated ErrP with a Bernoulli distribution
with probability P of observing the truth. We val-
idated the proposed model with real-time EEG data
obtained from human participants during a naviga-
tion task. The agent can adaptively change its search
direction based on human feedback. The good per-
formance of the model in simulations and experi-
ments with real human participants suggests that our
method is effective in human–robot shared autonomy

environments with uncertain noise input, such as
neural activities.
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Appendix

Table A1. Number of steps used in environment 1 with real human participants.

Episode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Failed
Numberdistance 13 12 6 19 14 9 3 18 17 5 16 4 7 10 15 20 8 2 11

S2 step 17 14 42 60 32 13 45 20 45 11 44 6 19 12 19 26 22 6 23 1
S4 step 60 32 54 31 60 21 3 30 60 17 49 20 17 10 60 42 10 6 49 4
S5 step 17 22 8 45 42 23 17 18 21 7 17 4 9 36 19 20 18 36 60 1
S6 step 21 24 16 35 56 60 3 60 60 7 56 16 23 60 60 60 60 36 55 7
S8 step 23 20 26 57 32 21 5 20 60 5 43 6 41 18 60 24 31 60 60 4
S10 step 53 50 60 60 22 28 3 60 25 7 16 4 13 34 31 42 40 14 17 3
S15 step 17 60 60 48 38 60 7 23 45 7 55 6 15 42 17 60 50 34 60 5

Table A2. Number of steps used in environment 2.

Episode 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Failed
Numberdistance 3 13 14 7 15 4 11 8 9 19 17 6 12 2 18 10 20 5 16

S2 Steps 3 23 48 7 60 12 19 10 12 53 29 6 24 4 28 30 60 17 16 2
S4 Steps 43 21 30 7 21 4 19 10 29 31 60 38 60 28 26 58 24 41 60 3
S5 Steps 3 17 28 7 21 12 60 12 40 37 60 8 16 16 38 38 36 60 34 3
S6 Steps 3 60 58 7 41 60 60 60 30 60 31 36 26 11 38 22 60 60 38 7
S8 Steps 11 19 22 17 25 6 17 10 60 24 24 8 16 4 60 14 40 7 34 2
S10 Steps 13 27 60 9 31 6 17 12 37 29 33 10 20 46 44 34 30 5 22 1
S15 Steps 3 27 18 7 45 60 60 10 12 19 29 6 38 4 24 40 37 18 20 2
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